OPERA:
AN INTEGRATED ASSESSMENT MODEL TO PLAN EFFECTIVE AIR QUALITY POLICIES

C. Carnevale, G. Finzi, R. Mansini, E. Pisoni, A. Visioli, M. Volta
DII, University of Brescia
RIAT - OPERA

RIAT

- JRC
- Beneficiaries
 - UNIVERSITY of BRESCIA
 - TERRARIA
- RIAT
- Lombardia

OPERA

- LIFE+
- Beneficiaries
 - ARPA-ER
 - UNIVERSITY of BRESCIA
 - TERRARIA
 - CNRS
 - JRC, RER, ASPA
- RIAT+
- Emilia Romagna, Alsace
IAM architecture

Input databases
- emission inventories and projections
- emission reduction measures:
 - technical measures
 - non-technical measures
 - costs
- Emission-concentration relationships (CTM simulations)

Decision model
- what-if analysis
- cost-benefit analysis
- cost-effective analysis
- multi-objective analysis

Deliverables
- efficient policies
- objective values
- post-processing:
 - ex-post analysis
 - sensitivity

Source-receptor models
Decision model approaches

- what-if analysis
- cost-benefit analysis
- cost-effective analysis
- multi-objective analysis
Decision model

- what-if analysis
- cost-benefit analysis
- cost-effective analysis
- multi-objective analysis

\[\text{opt} \left[J(x) \right] \]
\[x \in \Theta \]

\(J(x) \) is the objective function to be optimized
\(x \) is the set of decision variables
\(\Theta \) is the set of feasible decisions
Decision model

Cost-benefit analysis:

\[J(x) \] is a scalar function

all benefits and costs are monetized and assessed in a single function

Decision model

Cost-effective analysis

\[J(x) \] is a scalar function

a single objective is optimized, while others required performances are included as constraints

RAINS/GAINS system, APD IIASA
Decision model

Multi-objective analysis:

\(J(x) \) is a vector

\(J(x) \) represents different and often conflicting objectives.

Decision problem

\[
\min_x J(x) = \min_x \left[\text{AQI}(x) \cdot \text{inC}(x) \right]
\]

\(x \in \mathcal{X} \)

Set of feasible decisions

Set of decision variables

Air Quality Index: PM10, PM2.5, Ozone, NOx

Internal Costs

Set of precursor emission reduction measures
AQI: Source-Receptor models

\[
\frac{\partial AQI(x)}{\partial x} = \frac{\partial AQI(x)}{\partial E} \cdot \frac{\partial E}{\partial x}
\]

- **Source-Receptor models**
 - S-R models identified processing CTM model simulations
 - Non linear processes
 - Local features
 - Design of experiments
DoE: CTM simulations

<table>
<thead>
<tr>
<th>Scenario</th>
<th>NOx</th>
<th>VOC</th>
<th>NH3</th>
<th>PM</th>
<th>SO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>B</td>
</tr>
</tbody>
</table>

- C = CLE2010 + 10%
- A = MFR2020
- B = (CLE2015 + MFR2015)/2
Source-receptor models

- Input data: precursor emissions
- Target data: AQI
PM10: basecase

CHIMERE

S-R models

(µg/m³)
S-R models

Identification

Validation

corr=1.00
mse=0.13

corr=0.99
mse=0.72
Decision variables

Detailed approach

- Technical measures:
 - Actual technical measures spreading
 - Actual technical measures spreading and replacing

- Non technical measures

Lumped approach

- Technical measures:
 - Macrossector precursor emission reductions
Constraints

• Technical measures feasibility
• Technical and non technical measure mix
• National and European plan harmonization
• Emission reduction measures replacing
• Budget constraints due to ongoing or foreseeable AQ policies
Problem formalization

\[
\min_{X_{i,j,k,t}} J(X_{i,j,k,t}) = \min_{X_{i,j,k,t}} AQI(X_{i,j,k,t})
\]

\[
inC(X_{i,j,k,t}) \leq L \quad 0 \leq L \leq L
\]

If no technology replacement:
- to ensure the technology feasibility:
 \[
 X_{i,j,k,t}^{CLE} \leq X_{i,j,k,t} \leq \bar{X}_{i,j,k,t}^{CLE} \quad \forall i, j, k, t
 \]
- to ensure the emission conservation:
 \[
 \sum_{i,j,k} X_{i,j,k,t} \leq 1
 \]

If technology replacement:
- to ensure the technology feasibility:
 \[
 0 \leq X_{i,j,k,t} \leq \bar{X}_{i,j,k,t}^{CLE} \quad \forall i, j, k, t
 \]
- to ensure the emission conservation:
 \[
 \sum_{i,j,k} X_{i,j,k,t} \leq 1
 \]
- to ensure optimal reduced emissions > CLE
 \[
 \sum_{i,j,k} \text{eff}_{i,j,k,t,p} \cdot X_{i,j,k,t} \geq \sum_{i,j,k} \text{eff}_{i,j,k,t,p} \cdot X_{i,j,k,t}^{CLE} \quad \forall i,j,k,t
 \]
- to ensure no controlled emission in CLE remains without control
 \[
 \sum_{i,j,k} X_{i,j,k,t} \geq \sum_{i,j,k} X_{i,j,k,t}^{CLE}
 \]
Effective solutions

CLE 2020

AQI PM10 [μg/m³] vs. Cost over CLE [Meuro/year]
Problem options

- Seasonal air quality indexes
- Point and area emission sources
- Optimization domains
- Population exposure
- GHGs budget
System tests

- Emilia Romagna
- Alsazia
- Standard methodology for European regions
IAM architecture

Input databases
- emission inventories and projections
- emission reduction measures:
 - technical measures
 - non-technical measures
 - costs
- Emission-concentration relationships (CTM simulations)

Decision model
- what-if analysis
- cost-benefit analysis
- cost-effective analysis
- multi-objective analysis

Source-receptor models

Deliverables
- efficient policies
- objective values
- post-processing:
 - ex-post analysis
 - sensitivity